# Assessment of Pb-Free Norris-Landzberg Model to JG-PP Test Data

Craig Hillman
DfR Solutions
February 21, 2006

#### Introduction

#### Why the comparison

 To determine whether the lead-free Norris-Landzberg model fits the JCAA/JG-PP test data

#### How the comparison was done

- Determined acceleration factors (AF) by comparing characteristic life from thermal cycle conditions' test data
- Calculated the predicted AFs from the thermal cycle test conditions using the lead-free Norris-Landzberg model
- Compared the predicted AF to the observed AF for each set of test conditions to see how well they correlate



# Norris-Landzberg Equation (Pb-Free)

$$AF = \frac{N_o}{N_t} = \left(\frac{\Delta T_t}{\Delta T_o}\right)^{2.65} \left(\frac{t_t}{t_o}\right)^{0.136} \exp\left\{2185 \left(\frac{1}{T_{\text{max},o}} - \frac{1}{T_{\text{max},t}}\right)\right\}$$

AF – acceleration factor

N-thermal fatigue life

△T - temperature difference

t – dwell time (min)

 $T_{\text{max}}$  – maximum cycle temperature (K)

o, t – operating or test conditions

<sup>&</sup>lt;sup>1</sup> N. Pan et al, "An Acceleration Model For Sn-Ag-Cu Solder Joint Reliability Under Various Thermal Cycle Conditions". pp. 876-883, SMTAI, September 2005, Chicago, IL



### Where the data came from

#### **JGPP Test Data:**

- "JCAA/JG-PP No-Lead Solder Project: -20°C to +80°C Thermal Cycle Test" T. Woodrow, The Boeing Company
- "JCAA/JG-PP No-Lead Solder Project: -55°C to +125°C Thermal Cycle Testing Status Report" Dave Hillman, Rockwell Collins
- "JCAA/JG-PP No-Lead Solder Project: Thermal Shock Testing"
   T. Woodrow, Boeing Phantom Works

#### HP data:

 "An Acceleration Model For Sn-Ag-Cu Solder Joint Reliability under Various Thermal Cycle Conditions" N. Pan, et al., Hewlett-Packard



## Characteristic Life / Acceleration Factors (AFs)

|      |                                     |         |                      |         |                      | Comparison | N.L    | Test   | % Diff |
|------|-------------------------------------|---------|----------------------|---------|----------------------|------------|--------|--------|--------|
| Part |                                     | ∆T (°C) | t <sub>d</sub> (min) | η       | T <sub>max</sub> (K) | 1          | 9.6    | 3.9    | 245    |
| TSOP | 0 <sub>1,2,3,4</sub>                | 100     | 30                   | 4141.06 | 353.15               | 2          | 8.7    | 3.5    | 245    |
|      | t <sub>1,5,7</sub>                  | 180     | 30                   | 1061.76 | 398.15               | 3          | 8.7    | 3.7    | 233    |
|      | t <sub>2</sub> , o <sub>5,6,7</sub> | 180     | 15                   | 1168.48 | 398.15               | 4          | 9.6    | 3.6    | 267    |
|      | t <sub>3,6</sub>                    | 180     | 15                   | 1109.77 | 398.15               | 5          | 1.1    | 1.1    | 100    |
|      | t <sub>4,7</sub>                    | 180     | 30                   | 1157.20 | 398.15               | 6          | 1.0    | 1.1    | 95     |
|      |                                     |         |                      |         |                      | 7          | 1.1    | 1.1    | 100    |
|      |                                     |         |                      |         |                      |            |        |        |        |
|      |                                     |         |                      |         |                      |            |        |        |        |
| Part |                                     | ∆T (°C) | t <sub>d</sub> (min) | η       | T <sub>max</sub> (K) | Comparison | N.L    | Test   | % Diff |
| CLCC | 0 <sub>1,2</sub>                    | 100     | 30                   | 2360.22 | 353.15               | 1          | 9.5537 | 4.6400 | 205.90 |
|      | t <sub>1,</sub> o <sub>3</sub>      | 180     | 30                   | 508.67  | 398.15               | 2          | 8.6942 | 3.4660 | 250.84 |
|      | t <sub>2,3</sub>                    | 180     | 15                   | 680.96  | 398.15               | 3          | 0.9100 | 0.7470 | 121.83 |



## Predicted vs. Observed AF





## Observations

- The Norris-Landzberg seems to over predict AFs for the JG-PP data
- Specifically, JG-PP test vehicles are either
  - Failing sooner than expected under benign conditions, or
  - Lasting longer under severe conditions
- Why?
  - Test results may be invalid
  - NL model may be inaccurate outside certain parameters



# Validity of Test Data

- Compared to data obtained by Motorola<sup>2</sup> and HP, using similar components, the JG-PP TSOP has a longer characteristic life
  - Thermal Shock

```
■ JG-PP (-55 to 125 C, 15 min dwell): η – 1168 cycles
```

- Motorola (-55 to 125 C, 15 min dwell): η 613 cycles
- Thermal Cycling

```
■ JG-PP (-20 to 80 C, 30 min dwell): η – 4141 cycles
```

Motorola (0 to 100 C, 15 min dwell): η − 2564 cycles

■ HP (0 to 100C, 10 min dwell): η – 1843 cycles

 $\eta$  – 3071 cycles

However, ratios of time to failure are relatively constant (~4:1)

<sup>2</sup> G. Swan et al, "Development of Lead-Free peripheral Leaded and PBGA Components to Meet MSL3 at 260C Peak Reflow Profile". LF2-6 pp.1-7. IPEX 2001



# Validity of Model

- Constants based on test data from area array (BGA, CSP) and leaded (TSOP) devices
  - Except for one condition, test environments limited between 0 to 100C
  - Wide range in time to failures (150 to 10000 cycles)
- Seems to over predict effect of maximum temperature and change in temperature
  - Constants more inline with SnPb NL model may provide a better fit to the test data



# Validity of Model (cont.)

#### SnPb Norris-Landzberg (NL) Model

$$AF = \frac{N_o}{N_t} = \left(\frac{\Delta T_t}{\Delta T_o}\right)^{2.0} \left(\frac{t_t}{t_o}\right)^{0.136} \exp\left\{1414 \left(\frac{1}{T_{\text{max},o}} - \frac{1}{T_{\text{max},t}}\right)\right\}$$

- replaced coefficients with original from SnPb model 2.65→2.0 and 2185→1414
- Compared to Pb-free NL model, the constants from the SnPb NL
  - Provide better predictions
    - All data points, from multiple studies, are within a 2x range
  - A more conservative



# Data from other Experiments

| Motorola       | $\Delta$ T (°C) | t <sub>d</sub> (min) | η     | T <sub>max</sub> (K) | Comparison | N.L    | Test   | % Diff |
|----------------|-----------------|----------------------|-------|----------------------|------------|--------|--------|--------|
| 0              | 100             | 15                   | 2564  | 373                  | 1          | 3.4545 | 1.8936 | 182.42 |
| t1             | 165             | 15                   | 1354  | 398                  | 2          | 4.1111 | 4.1759 | 98.45  |
| t2             | 180             | 15                   | 614   | 398                  | 3          | 1.1901 | 2.2052 | 53.97  |
|                |                 |                      |       |                      |            |        |        |        |
| HP             | $\Delta$ T (°C) | t <sub>d</sub> (min) | η     | T <sub>max</sub> (K) | Comparison | N.L    | Test   | % Diff |
| 0              | 60              | 10                   | 6849  | 373                  | 1          | 2.7778 | 3.7162 | 74.75  |
| t1             | 100             | 10                   | 1843  | 373                  | Comparison | N.L    | Test   | % Diff |
| 0              | 60              | 10                   | 9455  | 373                  | 1          | 2.7778 | 3.0788 | 90.22  |
| t1             | 100             | 10                   | 3071  | 373                  |            |        |        |        |
|                |                 |                      |       |                      |            |        |        |        |
| Syed (flexBGA) | $\Delta$ T (°C) | t <sub>d</sub> (min) | η     | T <sub>max</sub> (K) | Comparison | N.L    | Test   | % Diff |
| 0              | 100             | 5                    | 10370 | 373                  | 1          | 4.0112 | 3.5176 | 114.03 |
| t1             | 165             | 15                   | 2948  | 398                  | 2          | 3.8352 | 3.7142 | 103.26 |
| t2             | 180             | 3                    | 2792  | 398                  | 3          | 0.9561 | 1.0559 | 90.55  |
|                |                 |                      |       |                      |            |        |        |        |
| HP (HICTE BGA) | $\Delta T$ (°C) | t <sub>d</sub> (min) | η     | T <sub>max</sub> (K) | Comparison | N.L    | Test   | % Diff |
| 0              | 60              | 10                   | 6206  | 333                  | 1          | 4.3798 | 7.3012 | 59.99  |
| t1             | 100             | 10                   | 850   | 373                  |            |        |        |        |



## Lead free Norris-Landzberg Model





## SnPb Norris-Landzberg Model





### Conclusion

- The SnPb constants for the Norris-Landsberg model seem to be a better fit to the existing Pb-free data then the revised constants provided in the paper by Pan, et. al.
  - While the paper did a good job in investigating dwell times, a broader range of test data may be necessary before definitive constants can be obtained

